Subject programme

- 1. Subject name / subject module: Elective Subject: Virtual and Augmented Reality Design
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Control Systems Engineering
 - Degree of the studies: 2nd degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Skiba Grzegorz, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor Form of classes						Total				
Mode of study		SOW	ECTS	Laboratory work	SOW	ECTS	 SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies				45	55	4					Д
Part-time studies						4					+
Credit rigor				Grad	ded assigm	ient					

6. Student workload – ECTS credits balance:

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)	
Participation in lectures	-	
Participation in laboratory classes	45	
Preparation to laboratory classes	30	
Independent study of the subject	13	
Preparation to a final test	10	
Participation in an exam / graded assignment	2	
Total student workload (TSW)	100	
ECTS credits	4	
* Student's workload related to practical forms	100	
Student's workload in classes requiring direct participation of academic teachers	45	

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

- Recommended admission requirements none.
- Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

Specific learning outcomes for the subject			Teaching	Methods for testing of	
Outcome symbol	Outcome description	Form	method	(checking, assessing) learning outcomes	
	Knowledge				
K_W07	Student knows, at an advanced level, the Unity environment, programming and designing virtual and augmented reality applications, and is able to use this knowledge to apply it in mechatronics industry.	Laboratory work	Inquiry methods	Student learning activities	
	Skills				
K_U02	Student is able to use documentation related to the programming environment as well as different devices for use with augmented and/or virtual reality for implementation in projects and tasks related to mechatronics.	Laboratory work	Inquiry methods	Student learning activities	
	Social competence				
К_К02	Student is ready to recognize and solve problems related to virtual and augmented reality technology and knows where to find information related to particular AR/VR technology in case he needs assistance.	Laboratory work	Inquiry methods	Student learning activities	

Subject programme

9. Assessment rules / criteria for each form of education and individual grades:

Activity	Grades	Calculation	To final
Final project	bdb (5)	5*100%	5.0
Final result			5, 0

0 - 3.00	ndst	4.01 – 4.50	db
3.01 – 3.50	dst	4.51 – 4.7	db+
3.51 - 4.00	dst+	4.71 – 5.0	bdb

- **10.** The learning contents with the form of the class activities on which they are carried out:
 - a. Laboratory work:
 - a. Introduction to Virtual Reality: Oculus Rift, HTC Vive, PS 4 VR, Google Daydream;
 - b. Introduction to Augmented Reality with Microsoft HoloLens;
 - c. Unity development: Designing and animating game worlds for virtual reality applications, Creating objects and applications for augmented reality;
 - d. Modeling, texturing and importing VR/AR objects;
 - e. Deploying applications to VR/AR systems.
- **11.** Required teaching aids:

Lecture - multimedia projector

Laboratory classes - specialist laboratory

- 12. Literature:
 - a. Basic literature:

Sharp J.: Microsoft Visual C#. Step by step., Microsoft Press, Redmond, 2015.Blackman S.: Unity for Absolute Beginners, Apress, Berkeley, 2014.Taylor A. G.: Develop Microsoft HoloLens Apps Now, Apress, Berkeley, 2016.

a. Supplementary literature:

Flavell L.: Beginning Blender, Apress, New York, 2010.

Craig A. B.: Understanding Augmented Reality, Morgan Kaufmann, Waltham, 2013.

Neelakantam S., Pant T.: Learning Web-based Virtual Reality, Apress, Berkeley, 2017.

b. Internet sources:

https://unity.com/learn, Unity learning library https://docs.unity3d.com/Manual/index.html, Unity user manual and documentation https://brackeys.com/, Game development tutorials database

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- **14.** Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	Skiba Grzegorz, mgr inż.